Distances between pairs of vertices and vertical profile in conditioned Galton-Watson trees
نویسندگان
چکیده
We consider a conditioned Galton–Watson tree and prove an estimate of the number of pairs of vertices with a given distance, or, equivalently, the number of paths of a given length. We give two proofs of this result, one probabilistic and the other using generating functions and singularity analysis. Moreover, the second proof yields a more general estimate for generating functions, which is used to prove a conjecture by Bousquet–Mélou and Janson [5], saying that the vertical profile of a randomly labelled conditioned Galton–Watson tree converges in distribution, after suitable normalization, to the density of ISE (Integrated Superbrownian Excursion).
منابع مشابه
Noncrossing trees are almost conditioned Galton-Watson trees
A non-crossing tree (NC-tree) is a tree drawn on the plane having as vertices a set of points on the boundary of a circle, and whose edges are straight line segments that do not cross. In this paper, we show that NC-trees with size n are conditioned Galton–Watson trees. As corollaries, we give the limit law of depth-first traversal processes and the limit profile of NC-trees.
متن کاملConditioned Galton–Watson trees do not grow
A conditioned Galton–Watson tree is a random rooted tree that is (or has the same distribution as) the family tree of a Galton–Watson process with some given offspring distribution, conditioned on the total number of vertices. We let ξ be a random variable with the given offspring distribution; i.e., the number of offspring of each individual in the Galton–Watson process is a copy of ξ. We let ...
متن کاملSimply Generated Trees, Conditioned Galton–watson Trees, Random Allocations and Condensation: Extended Abstract
taking the product over all nodes v in T , where d+(v) is the outdegree of v. Trees with such weights are called simply generated trees and were introduced by Meir and Moon [24]. We let Tn be the random simply generated tree obtained by picking a tree with n nodes at random with probability proportional to its weight. (To avoid trivialities, we assume that w0 > 0 and that there exists some k > ...
متن کاملLocal limits of Galton-Watson trees conditioned on the number of protected nodes
We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton-Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated sizebiased tree. We then apply this result to give the limit in distribution of a...
متن کاملThe shape of large Galton-Watson trees with possibly infinite variance
Let T be a critical or subcritical Galton-Watson family tree with possibly infinite variance. We are interested in the shape of T conditioned to have a large total number of vertices. For this purpose we study random trees whose conditional distribution given their size is the same as the respective conditional distribution of T. These random family trees have a simple probabilistic structure i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 38 شماره
صفحات -
تاریخ انتشار 2011